Discriminant Analysis
 of Natural Formations Reflective Characteristics by a Minimal Number of Wavelengths

T. K. Yanev, D. N. Mishev

It has been established that the different natural formations reflect the energy of the visible and infrared ranges in different ways. As the range is comparatively broad the spectral reflective characteristics are measured in a considerable number of wavelengths. That makes the measuring process and the subsequent analysis difficult, and the information obtained contains a big amount of redundancy.

The problem to be solved here is the following: what is the minimum number of wavelengtls λ_{i} and exactly in which wavelengths the reflection index must be measured so that the identification of the reflective characteristies $r_{/}\left(\lambda_{i}\right)$ of a set M, given in advance, from J classes of objects O_{f}, $j=1, \ldots, j$, can be ensured. We assume that the functions $r_{j}\left(\lambda_{i}\right), i-1, \ldots, n$ are given with their confidence intervals $\pm A r_{j}\left(\lambda_{i}\right)$ in the visible range of electromagnetic waves $\lambda \lambda_{r}=\lambda_{n}-\lambda_{1}$. It is assumed that $\mu_{/}\left(\lambda_{i}\right)$ are stationary random functions. The problem is solved in two ways: (1) the reflective spectral characteristics are used directly for the purposes of identification; and (2) a transiormation of $r_{j}\left(\lambda_{i}\right)$ is carried out in advance by means of suitable transforming functions, after which the identification of the transformed functions is performed.

1. Identification by Means of $r_{j}\left(r_{i}\right)$

The dividing surface for the identification of $r_{f}\left(\lambda_{i}\right)$ is chosern in accordance with the Bayes criterion for a minimum average risk (one-dimensional case):

$$
\begin{equation*}
\lambda_{0}=\frac{w\left(\lambda_{i j} a_{h}\right)}{w\left(\lambda_{t} / a_{j}\right)}=\frac{r_{k j} p\left(a_{j}\right)}{r_{j h} \bar{m}\left(\alpha_{h}\right)}, \tag{1}
\end{equation*}
$$

where $r_{j h}$ and $r_{h f}$ are weighting coefficients of the j and k classes of objects, $p\left(a_{j}\right)$ and $p\left(a_{k}\right)$ are a priori probabilities of appearance in these classes. In
our case all objects will be considered as equally likely and of equal weight and then $\lambda_{0}=1,1$. e. the dividing sutface of the criterion is reduced to the intersection point of the $w\left(\lambda_{i} a_{k}\right)$ and $w\left(\lambda_{i} / a_{j}\right)$ distributions of j and k classes. If this point is out of the confidence fimits $+\Delta r_{j}\left(\lambda_{i}\right)$ and $\pm \Delta r_{h}\left(\lambda_{i}\right)$ of the classes compared, these classes are identified in the waveieng $t h \lambda_{i}$. The algorithm is easily realized in the following way:

The mattix A of the relations "the i th and the k th classes are recog. nizable in the $r_{f} \pm A r_{j}$ and $r_{k} \pm A r_{k}$ intervals" (these relations are denoted here with 1). The opposite ratios of nomrecognizability (when $r_{j} \pm A r_{j}$ and $r_{t}+A r_{h}$ have a non-empty cross section) are designated by 0 . The matrix A is formed for all two-element combinations $C_{\text {, }}^{2}$ of the $O_{;}$classes and for all wavelengths λ_{i}.

A subset of M is identified in a given combination of wavelengths \langle, if in each column of A containing the wavelengths there is at least one number 1 . In this way the rule for the addition of 0 and 1 is determined: $0+0=0$; $0+1=1+0=1+1=1$. The identification of $r_{j}\left(\lambda_{i}\right)$ by means of the combination C_{n}^{m} of the wavelengths is possible only if all coltums of the submatrix formed by C_{t}^{m} have a sum equal to 1 .

The complete solution of the problem is obtained by studying successively the combinations $C_{n}^{n t}, n t=1, \ldots, n$ until the first solutions belonging to a given class of wavelength combinations C_{n}^{m} are obtained.

2. Identification by Means of Transformation in Advance

The transformation of the origital function $r_{j}\left(\lambda_{j}\right)$ is reasonable if the new function offers better possibilities of identifying $r_{j}\left(h_{l}\right)$ by means of a smaller number of wavelengths. That is why it is necessary for the transtormed function $z=f\left(r_{j}\right)$ to check whether the Bayes criterion shows better results (reducing Type I and Type II errors). For this purpose the law of the distribution of z must be determined:

$$
\begin{equation*}
p(z)=\cdot p[\Psi(z)] \cdot \Psi^{\prime}(z), r_{z}=-\Psi(z) ; \Psi^{\prime}(z)=\frac{d Y}{d z} \tag{2}
\end{equation*}
$$

After that for the z_{j} and z_{k} distributions of the two classes compared the summary error of Type I and Type II is to be found:

$$
\begin{equation*}
p-=\int_{-\infty}^{z_{e r}} p_{k}(z) d z+\int_{z_{c r}}^{\infty} p_{j}(z) d z \tag{3}
\end{equation*}
$$

where $z_{c r}$ - internal intersection point of $p\left(z_{j}\right)$ and $p\left(z_{h}\right)$.

In general, the integral in (3) is not solvable. When the set is given it can be solved by numerical methods. In order to obtain some analytical results we examined the particular case determined by the following limiting conditions:
I. The distribution $p\left(r_{f}\right)$ is normal;
II. The conditions $\sigma_{f}<\mu_{j}$ and, in particular, $\sigma_{j}=q \mu_{j}, q \leqslant 1$, are satisfied.
III. The functions z are integral transformations which, according to r_{j} and r_{t} sampling, are replaced by their sums.

In this study the following transforming functions are examined:
a) Module-structure function:

$$
\begin{equation*}
C(\tau)=\int_{0}^{T}|f(x)-f(x+\pi)| d x \tag{4}
\end{equation*}
$$

used in paper [1]. There it is proved that the function is symmetric with a symmetry axis at $x=\frac{T}{2}$. It is shown also that $C(x)$ and $f(x)$ are in a homomorphous relationship, i. e. different functions determined in the following way: $f(x)$, if $(j x+C)+D, i= \pm 1, j= \pm 1, C=$ const., $D=$ const. may correspond to the same function $C(x)$. This homomorphism is not a strong limitation, because in practice it can be easily transformed into an isomorphism by means of control characteristics of the type : $C_{\text {entr }}(\tau)=\int_{0}^{x_{c t}}|f(x)-f(x-x)| d x$ and by the $f(x)$ value for $x=x_{\text {cf }}$. For the example examined in this work it is not necessary to use such control characteristics.
b) Kolmogorov's structural function:

$$
\begin{equation*}
C_{K}(\tau)=\int_{0}^{T}[f(x)-f(x+\tau)]^{2} d x \tag{5}
\end{equation*}
$$

c) Autocorrelation function;

$$
\begin{equation*}
K(\tau)=\int_{0}^{T}[f(x)-m][f(x+\tau)-m] d x \tag{6}
\end{equation*}
$$

In our case $f(x)=r\left(l_{i}\right)$ and the integrals are substituted by the following sums:

$$
\begin{gather*}
C_{j}(\tau)=\sum_{(i)}\left[r_{j}\left(\lambda_{i}\right)--r_{j}\left(\lambda_{j}+v\right)\right], \tag{4s}\\
C_{k j}(\tau)=\sum_{(i)}\left[r_{j}\left(\lambda_{i}\right)-r_{f}\left(\lambda_{i}+\tau\right)\right]^{2} \tag{5a}\\
K_{j}(v)=\sum_{(i)}\left[r_{j}\left(\lambda_{i}\right)-\bar{r}_{j}\right]\left[r_{j}\left(\lambda_{i}+v\right)-\bar{r}_{j}\right]^{2} . \tag{6a}
\end{gather*}
$$

It follows from the litniting conditions I, II, III that the sum $C_{j}(x)$ has also a normal distribution with an arithmetic mean C_{j} and dispersion a_{j}^{2} respectively equal to:

$$
\begin{equation*}
\overline{C_{j}(\tau)} \approx \sum_{i i)}\left[\overline{r_{j}\left(\overline{\lambda_{i}}\right)}-r_{j} \overline{\left.\lambda_{i}+\tau\right)}\right] ; \sigma_{j}^{z} \approx \sum q^{2}\left\{\left[\overline{r_{j}\left(\lambda_{i}\right)}\right]^{2}+\left[\overline{\left[r_{j}\left(\lambda_{i}+\tau\right)\right.}\right]\right. \tag{7}
\end{equation*}
$$

For the sums $C_{k j}$ and K_{f}, according to equations (5a) and (6a) and conditions I and II, after neglecting the small terms of higher order, we obtain:

$$
\begin{equation*}
\bar{C}_{h_{j}(\tau)} \approx \sum_{\left.\theta^{\prime}\right)}\left[\overline{r_{j}\left(\lambda_{i}\right)}-\overline{r_{j}\left(\lambda_{i}+\bar{z}\right)^{2}}\right. \tag{8}
\end{equation*}
$$

$$
\sigma_{k_{j}}^{2}=\sum_{(h)} 4 q^{2}\left[r_{j}\left(\lambda_{i}\right)-r_{j}\left(\lambda_{i}+\tau\right)\right]\left\{\left[\bar{r}_{j}\left(\lambda_{i}\right)\right]^{2}+\left[r_{j}\left(\lambda_{i}+\tau\right)\right]^{2}\right\}
$$

and

$$
\begin{equation*}
K_{j} \rightleftharpoons \sum_{(i)}\left[\overline{r_{l}\left(\lambda_{i}\right)}-r_{l}\left[\overline{r_{j}\left(\lambda_{i}+\bar{x}\right)}-\overline{r_{l}}\right]\right. \tag{9}
\end{equation*}
$$

$$
\left.a_{k_{j}}^{2} \approx \sum_{(l)}\left\{\left[\overline{r_{j}}\left(\overline{\lambda_{i}}\right)-\overline{r_{j}}\right]^{3} r_{j}\left(\overline{\lambda_{i}}\right)^{2}+\left[r_{j}\left(\lambda_{i}+\tau\right)-\overline{r_{j}}\right]^{2} \overline{r_{j}\left(\lambda_{i}+\tau\right.}\right)^{2}\right\} q^{2}
$$

Thus the distribution of C, C_{k}, K from equations (4a), (5a) and (6a) proves to be normal, provided the limitations I and II are given, Then their intersection point for the f and k classes is found by means of the equation:

$$
\frac{1}{\sqrt{2 x o_{j}}} e^{-\frac{\left(r-\mu_{j}\right)^{2}}{2_{0}^{2}}}=\frac{1}{\sqrt{2 \pi} \sigma_{k}} e^{-\frac{\left(r-\mu_{k}\right)^{2}}{2_{o_{k}^{2}}^{2}}}
$$

After calculating its logatithm the equation takes the following form:

$$
-\frac{\left(r-z_{j}\right)^{2}}{2 \sigma_{j}^{2}}=-\ln \frac{\sigma_{j}}{\sigma_{k}}-\frac{\left(r-\mu_{k}\right)^{2}}{2 \sigma_{k}^{2}},
$$

thus

$$
\begin{equation*}
r_{1,2}=\frac{-b \pm \sqrt{b b^{2}-4 a c}}{2 a} \tag{10}
\end{equation*}
$$

where $a=\frac{1}{a_{\mu}^{2}}-\frac{1}{\sigma_{j}^{2}}$.

$$
\begin{aligned}
& b=2\left(\frac{\mu_{j}}{\sigma_{j}^{2}}-\frac{\mu_{k}}{\sigma_{h}^{2}}\right), \\
& \text { c. } \frac{\mu_{k}^{2}}{\sigma_{k}^{2}}-\frac{\mu_{j}^{2}}{\sigma_{j}^{2}}-2 \mathrm{In} \frac{\sigma_{j}}{\sigma_{h}}:
\end{aligned}
$$

The efficiency of each of the transformations C, C_{k}, K is measured by the value of the integral in (3). In this case it may take the following form:

$$
\begin{equation*}
p=\int_{-\infty}^{\eta / 1,2} e^{--\eta_{j}^{2}} d \eta_{j}+\int_{\eta_{k l, 2}}^{\infty} e^{-\frac{\eta_{k}^{2}}{2}} d \eta_{k}, \tag{3a}
\end{equation*}
$$

where $\eta_{j, k}=\frac{r-\mu_{j, k}}{\sigma_{j, k}}$ is the coordinate of the normalized normal distribution. The value of p will be smaller when the limit

$$
\begin{equation*}
\eta_{1,2_{j, k}}=\frac{r_{1,2}-\mu_{j, k}}{\sigma_{j, k}} \tag{11}
\end{equation*}
$$

is greater in absolute value. In spite of the limiting conditions I, II and III, the analytical examination of the criterion (11) is still difficult, as the expressions for $\mu_{j, k}$ and $\sigma_{j, k}$ from (7), (8) and (9) take part in (10) in a relatively complicated manner. That is why two particular problems are treated in our further work.
IV. The functions $\overline{r_{1}}\left(\overline{\lambda_{i}}\right)$ and $\overline{r_{k}\left(\lambda_{i}\right)}$ are connected by the determinated functional relation:

$$
\begin{equation*}
\overline{r_{k}\left(\lambda_{i}\right)}=(1+\theta) \overline{r_{i}\left(\lambda_{i}\right)}, \tag{12}
\end{equation*}
$$

where $\theta=$ const $;$ ㅂㅂ $\mid \leqslant 1$.
V. The functions $\overline{r_{k}\left(\lambda_{i}\right)}$ and $\overline{r_{j}\left(\lambda_{i}\right)}$ are of such a type that their differences are of a randon character.

$$
\begin{equation*}
\overline{r_{k}\left(\lambda_{i}\right)}=\overline{r_{j}\left(\lambda_{t}\right)}+\Delta r_{j, k}\left(\lambda_{i}\right), \tag{13}
\end{equation*}
$$

where $\Delta r_{j, r}\left(l_{i}\right)$--random function;

$$
\overline{A I_{h k}\left(\lambda_{j}\right)}=0 .
$$

We shall first examine case IV.
It follows from equations (7), (8) and (9) that for μ, o definted by (12) and for the three transforming functions C, C_{k} and K the following expressions are valid:

$$
\mu_{\beta}=(1+0) \mu_{j} o_{r}^{2}=(1+\theta)^{2} \sigma_{j}^{2}
$$

Then the equation (10) takes the form

$$
r=\frac{b}{a}-=\mu j \frac{2(1+b)}{2+\theta}
$$

assuming $\ln \sigma_{h} / \sigma_{j} \approx 0$, and (11), respectively:

$$
\begin{equation*}
\eta_{j, k}=\frac{\mu_{j}}{\sigma_{j}} * \frac{\theta}{2+\theta}=\frac{\theta}{2+\theta} \cdot \frac{1}{V_{j}} ; \quad V_{j} \cdots{ }_{\mu_{j}}^{\sigma_{j}} . \tag{11a}
\end{equation*}
$$

Therefore in this case the efficiency of the criterion η is inversely proportional to the coefficient of variance V and the comparative analysis is to be cartied out by means of $V_{G}, V_{C_{K}}, V_{K}$, For this purpose the following ratios should be formed:

With a view to equations (7), (8), (9) for $\omega_{C_{1}} C_{K}$:

$$
\begin{equation*}
\omega_{C_{,} c_{K}}=\sqrt{\frac{\left(\frac{\sum}{(i)} X_{i}-Y_{i}\right)^{2} \cdot 4 \cdot \frac{\sum_{(i)}^{7}}{\left[\frac{\sum_{i}}{(i)}\left(X_{i}-Y_{i}\right)^{2}\left(Y_{i}^{2}\right)\right]\left[Y_{i}^{2}\right)}}{\left.\sqrt{(i)}\left(X_{i}-Y_{i}\right)^{2}\right]^{2}}} \tag{14}
\end{equation*}
$$

is obtained where, for the sake of simplicity, the substitutions $X_{i}=\overline{r_{j}\left(\lambda_{i}\right)}$, $Y_{i} \overline{r_{j}\left(\lambda_{i}+r\right)}$ are used. The sum $\Sigma X_{i}-Y_{i} \mid$ can also be presented as follows:

$$
\sum_{(i)} i_{i} X_{i}-Y_{i}=\sum_{\left(M_{i}\right)}\left(X_{i}-Y_{i}\right)+\sum_{\left(M_{i}\right)}\left(Y_{i}-X_{i}\right),
$$

where M_{1} is the set of i values for which $X_{i}>Y_{i}$, and M_{2} is the set of i values for which $X_{i}<Y_{i}$. This way of presenting allows $\Sigma\left|X_{i}-Y_{i}\right|$ to be differentiated with respect to X_{i} and Y_{i} respectively.

In such a case the extremutis of $\omega_{C, C_{K}}$ are determined by the condition:

$$
\begin{equation*}
\frac{\partial \omega_{C,} C_{K}}{\partial x_{i}}=0, \quad(15 \mathrm{a}) \quad \frac{\partial \omega_{C_{,} C_{R}}}{\partial y_{i}}=0, i=1, \ldots, n . \tag{15}
\end{equation*}
$$

The system (15) is equivalent to the following system:
$\left\{ \pm 2 \Sigma\left|X_{i}-Y_{i}\right| \cdot 4 . \Sigma\left[X_{i}-Y_{i}\right]^{2}\left(X_{i}^{2}+Y_{i}^{2}\right)+\left[Z^{2} \mid X_{i}-Y_{i} \rho^{2}\left[2\left(X_{i}-Y_{i}\right)\left(X_{i}^{2}+Y_{i}^{2}\right)\right.\right.\right.$

$$
\left.+\left(X_{i}-Y_{i}\right)^{2} 2 X_{i}\right]\left\{\Sigma\left(X_{i}^{2}+Y_{i}^{2}\right)\left[\Sigma\left(X_{i}-Y_{i}\right)^{2}\right]^{2}\right\}-\left[\Sigma\left|X_{i}-Y_{i}\right|\right]^{2} 4
$$

$$
\begin{equation*}
\times \Sigma\left[\left(X_{i}-Y_{i}\right)^{2}\left(X_{i}^{2}+Y_{i}^{2}\right)\right] \cdot\left\{2 X_{i}\left[\Sigma\left(X_{i}-Y_{i}\right)^{2}\right]^{2}\right. \tag{16}
\end{equation*}
$$

$$
\left.+\left[\Sigma\left(X_{i}^{2}+Y_{i}^{2}\right)\right]\left[2 \Sigma\left(X_{i}-Y_{i}\right)^{2}\right]\left\{2\left(X_{i}-Y_{i}\right)\right]\right\}=0
$$

In (16) all sums are identical for the equation system where $i=1, \ldots, n$. Therefore (16) is a system of equations of the third power with respect to X_{i}. This system is to be satisfied, i. e. the n equations of the third power must be cancelled out by their roots. As in this case all $X_{i}>0$, the equations of the third power have only onte real positive root, i. e. $X_{i}=$ const $=X$.

Similarly, the condition $Y_{i}-$ const $=Y$ can be obtained which satisfies the system (15a).

Therefore $\omega_{c, c_{K}}$ has an extremum at $X_{i}=X, Y_{i}-Y$.
The value of the extremum is

$$
\begin{equation*}
\left(\omega_{c}, c_{K}\right) \in x t=2 \tag{17}
\end{equation*}
$$

By way of example a check with the following values of X_{i} and Y_{i} : $x_{1}=a, x_{2}=2 a, x_{3}=3 a, y_{1}-2 a, y_{2}-3 a, y_{3} a$ shows that the extremum is a maximum.

The following expression is obtained for the coefficient $\omega_{c ; k}$

$$
\begin{equation*}
\omega_{C, K}=\sqrt{\left(\frac{\left(\sum_{(i)} X_{i}-Y_{i} \mid\right)^{2} \sum_{(i)}\left[X_{i}^{2}\left(X_{i}-\bar{r}_{j}\right)^{2}+Y_{i}^{2}\left(Y_{i}-\bar{r}\right)\right)^{2}}{\sum_{(i)}\left(X_{i}^{2}+Y_{i}^{2}\right)\left[\sum_{(i)}^{\top}\left(X_{i}-\overline{r_{j}}\right)\left(Y_{i}-\bar{r}_{i}\right)\right]^{2}}\right.} \tag{18}
\end{equation*}
$$

In a way analogots to the one used for $\omega_{C, C_{K}}$ it is shown that $\omega_{C, K}$ has an minimum at $X_{i}=X, Y_{i}=Y$. As $\sum_{(i)} X_{i}: \sum_{(i)} Y_{i}$, it follows that at the extremum $X=Y$, but then $\lim _{X_{i} \rightarrow r_{i}} \bar{r}=\frac{x+y}{2}$ and, consequently $|x-r|=y-\bar{r} \left\lvert\,=\frac{1-y+x \mid}{2}\right.$. The value of the minimum in this case is

$$
\begin{equation*}
\left(\omega_{C, K}\right)_{\mathrm{ext}}=2 \tag{19}
\end{equation*}
$$

Finally, let us determine the ratio $\omega_{C, r}$, measuring the efficiency of C with respect to \bar{r}. According to I and if this ratio is

$$
\begin{equation*}
\omega_{C, r}=\sqrt{\frac{\left(\sum_{(i)}\left|X_{i}-Y_{i}\right|\right)^{2}}{\sum_{(i)}\left(X_{i}^{2}+Y_{i}^{2}\right)}} . \tag{20}
\end{equation*}
$$

The magnitude of $\omega_{C, r}$ depends on the concrete structure of $r_{j}\left(h_{i f}\right)$. For frstance, for the straight line $y=x$ the module-structure characteristic is given by the expression $C(\tau)=2 \pi(T-r)$, while for the sine-shaped curve $y=\sin x$ this expression is $C(x)-8 \sin \frac{1}{2}$. It is clear that for the straight line the value of the function $C(v)$ becomes greater than half the area between the straight line and the abscissa when $i>\frac{T}{2}\left(1-\frac{1}{\sqrt{2}}\right)$ and, for the stne-shap. ed curve, when $\sin \frac{\pi}{2}>\frac{1}{2}$. Our experience shows that for curves of the spectral reflective characteristic type a considerable range of τ exists where the condition $\sum!r_{j}\left(\lambda_{i}\right)-r\left(\lambda_{i}+x\right) \left\lvert\,>n \frac{r_{j}}{2}\right.$ is fulfilled. In this case, as $\sum_{(0)} X_{i}^{2}=\sum_{(n)} Y_{i}^{2}<n X_{\max }^{2}$ and $\bar{r}_{j}>\frac{X_{\max }}{2}$ for $\omega_{G, r}$ thete exists a range for which

$$
\begin{equation*}
w_{C, r}>\sqrt{\frac{n}{8}} . \tag{21}
\end{equation*}
$$

So far we have examined the case defined by condition IV. Let us now assess the case defined by condition V. For this purpose it is sufficient to examine the difference $C_{(K)}-C_{(j)}, C_{K_{(k)}}-C_{K_{(j)}}$ and $K_{K}-K_{i}$. As the reflective characteristics \bar{r}_{k} and \bar{r}_{j} differ only in the random function which
has arithmetic mean equal to zero for a sufficiently large set of values of i, the following is obtained for the above differences:

$$
\begin{align*}
& C_{k}-C_{j}=\sum_{(i)}^{\top} X_{K_{i}}-Y_{K_{i}}:-\sum_{(i)}\left|X_{i}-Y_{j_{i}}\right| \tag{22}\\
= & \sum_{\left(M_{i}\right)}\left[A X_{j_{h}}(i)--A Y_{j_{h}}(i)\right]+\sum_{\left(M_{2 i}\right)}\left[A Y_{j_{k}}(l)-A X_{i_{k}}(i)\right]=0
\end{align*}
$$

in accordance with condition II.
Similarly we obtain:

$$
\begin{align*}
\mid C_{k(k)}-C_{k(j)} & =\sum_{(i)}\left[\Delta X_{j k}(i)-A Y_{j_{h}}(i)\right]^{2}+0 . \tag{23}\\
\left|K_{k}-K_{j}\right| & =\sum_{(i)}\left[\Delta X_{j_{h}}(l)\right]\left[A Y_{j_{k}}(l)\right] \tag{24}
\end{align*}=0 .
$$

Equations (22), (23) and (24) show that for functions defined by condition V the module-structure characteristics have 0 efficiency, as opposed to C_{k} and K. This result can be considered as a weighting property of C which C_{k} and K do not possess to the same degree.

Discussion

1. When the reflective characteristics are used for their identification directIy the algorithm exposed in item A furnishes the answer as to what the minimum number is of wavelengths λ_{i} (min) by means of which the appurtenance of new objects to a given set M of reference classes can be recognized. If the number of these classes is not too large, the necessary number of wavelengths $\lambda_{i(\min)}$ in which r is to be measured is comparatively small. This simpliffes the measuring process and the analysis of reflective characteristics.
2. In the case where M contains many reference classes (for instance, several hundred) it is probable that the mumber of $\lambda_{i \text { (min) }}$ shall be commensurable with the total number n of the sampled values of r. Here it is advisable to use some of the fransforming funclions C, C_{k}, K examined above-

The equations (17), (19) and (21) contain the basic results of the three transforming functions obtaned so far. They show that there is a possibiIity for the module-structure chafacteristics, defined by equation (4), to have a better efficiency than the orfginal functions and the transformations defined by equations (5) and (6). This efficiency results in a decrease of probability for type I and type Il errors using the Bayes criterion for a minimum risk when the identification of r_{j} is carried out. This reduction of errors leads to possibilities for the decrease also of the minimum number of $C(x)$ values, by means of which the identification of the set M of reference classes with given reflective characteristics is realized. A better efficiency of c is therefore to be looked for in the range of the greater values of x where the coefficient of variance V_{c} decreases considerably.

Tabiel

Here it is appropriate to deal with the following cases:
a) When τ is small, a correlation between the neighbouring values of r is possible to exist, i. e. the difference $r_{j}\left(\lambda_{i}\right)-r_{j}\left(\lambda_{i}+\tau\right)$ will not be a composition of independent random quantities. Then the equations (7), (8) and (9) will not be valid. However, a similar correlation could hardly be expected for $r>(5 \div 8) 4 \lambda=50-80 \mathrm{~nm}$ because such a τ corresponds to a transition into a zone of a new hue. Because of that most values of C, C_{k}, K and their dispersions remain as defined in (7), (8) and (9).
b) As the efficiency of $C(\tau)$ is expected to be considerable when the τ values are higher, the following question is to be answered: When the set M is large, will there be a sufficient number of high values of C for the identification of the classes of M ? The affirmative answer to this question

95	96	97	98	99	100	101	102	105	106	107	108	109	111	112	113	143
0.022	0.020	0.022	0.022	0.022	0.022	0.020	0.023	0.030	0.021	0.028	0.037	0.040	0.059	0.050	0.027	
0.0220	0.020	0.022	0.022	0.022	0.022	0.020	0.023	0.031	0.021	0.028	0.037	0.042	0.061	0.050	0.032	
0.023	0.020	0.023	0.023	0.023	0.023	0.021	0.026°	0.037	0.022	0.029	0.037	0.045	0.069	0.050	0.035	0.027
0.024	0.020	0.02	0.024	0.024	0.028	0.023	0.0281	0.045	0.023	0.030	0.038	0.049	0.077	0.051	0.035	0.029
0.026	0.022	0,026	0.028	0.028	0.032	0.026	0.081	0.043	0.024	0.031	0.039	0.050	0.100	0.053	0.035	0.029
0.027	02	0.027	0.030	0.030	0.035	0.029	0.033	0.047	0.025	0.032	0.040	0.053	0.150	0.057	0.037	0.030
0.029	0.025	0.029	0.032	0.032	0.039	0.030	$0.035{ }^{\circ}$	0.053	0.026	0.034	0.041	0.056	0.180	0.060	0.038	0.028
0.028	0.026	0.028	0,034	0.034	0.040	0.030	0.035	0.058	0.029	0.036	0.042	0.058	0.192	0.061	0.041	0.033
0.032	0.028	0.032	0.038	0.038	0.039	0031	0.035	0.056	0.030	0.038	0.043	0.060	0.181	0.062	0.040	0.028
0.035	0.030	0.035	0.040	0.040	0.040	0.033	0.038	0.058	0.031	0.03 y	0.047	0.063	0.163	0.068	0.039	0.030
0.040	0.041	3.041	0.045	0.045	0.049	0.038	0.042	0.068	$0.03{ }^{\text {c }}$	0.045	0.052	0.070	0.149	0.072	0.041	0.035
0.049	0.059	0.052	0.060	0.062	0.070	0.050	0.056	0.086	0.041	0.053	0.064	0.088	0.127	0.074	0.054	0.044
0.066	.079	0.074	0.082	0.092	0.105	0078	0.090	0.124	0.055	0.070	0.080	0.120	0.125	0.115	0.08	0.050
0.086	098	\% 101	0,115	0.123	0.149	0.112	0.119	0.172	0.076	0.089	0.101	0.159	0.116	0.167	0.116	0.055
0.102	0.111	0.119	0.128	0.143	0.182	0.129	0.134	0.202	0.090	0.108	0.121	0.180	0.104	0.192	0.126	0.058
0.115	1.102	0.121	0.129	0.151	0.198	0.133	0.145	0.225	0.095	0.118	0.134	0.18	0.096	0.210	0.131	0.061
0.110	. 092	0.117	0.123	0.147	0.182	0.131	0.142	0.224	0.090	0.112	0.131	0.173	0.087	0.199	0.121	0.062
0.096	080	0.105	0.111	0.127	0.161	0.120	0.131	0.221	0.081	0.103	0.122	0.159	0.072	0.173	0.114	0.061
0.087	0.072	0.092	0.100	0.110	0.141	0.107	0.114	0.204	0.073	0.096	0.111	0.147	0.076	0.155	0.093	0.059
0.078	0.065	0.083	0.090	0.095	0.134	0.098	0.103	0.18	0.069	0.090	0.103	0.134	0.085	0.152	0.08	0.057
0.070	.061	0.077	0.082	0.088	0.133	0.094	0.100	0.186	0.063	0.082	0097	0.126	0.145	0.161	0.073	0.055
0.065	0.057	0.07	0.077	0.081	0.110	0.091	0.097	0.176	0.060	0.079	0.090	0.119	0.238	0.146	0.079	0.053
0.061	. 050	0.06	0.073	0.079	0.095	0.084	0.094	0.161	0.059	0.073	0.087	0.112	0.318	0.131	0.077	0.051
0.056	0.045	0.065	0.070	0.057	0.100	0.079	0.089	0.157	0.057	0.070	0082	0.107	0.385	0.117	0.068	0.052
0.054	0.042	0.06	0.070	0.077	0.092	0.073	0.082	0.152	0.053	0.068	0.080	0.101	0.510	0.105	0.07	0.053
0.057	0.045	0.065	0.070	0.078	0.096	0.071	0.077	0.150	0.054	0.066	0.079	0.100	0.570	0.094	0.067	0.054
0.06	0.048	0.073	0.080	0.081	0.102	0.075	0.081	0.155	0.058	0.072	0.085	0.105	0.620	0.99	0.069	0.057
0.06	0.055	0.082	0.111	0.118	0.1181	0.095	0.108	0.181	0.075	0.098	0.125	0.182	0.660	0.125	0.08	0.062
0.078	0.073	0.095	0.151	0.145	0.158	0.118	0.141	0.253	0.161	0.238	0.295	0.381	0.690	0.200	0.112	0.066
0.128	0.138	0.142	0.242	0.238	0.250	0.208	0.225	0.325	0.355	0.395	0.450	0.452	0.715	0.275	0141	0.071
0.202	0.381	0.225	0.371	0.368	0.880	0.310	0.375	0.458	0.442	0.471	0.495	0.525	0.755	0.361	0.181	0.081
0.402	0.465	0.420	0.391	0.491	0.508	0.550	0.550	0.606	0.481	0.500	0.021	0.56	0.752	0.435	0.268	0.112
0.48	0.511	0.495	0.471	0.542	0.600	0.728	0.740	0.754	0.501	0.519	0.532	0.58	0.771	0.58	0.35	0.123
0.530	0.524	0.522	0.507	0.575	0.618	0.763	0.780	0.797	0.520	0535	0.550	0.620	0.789	0.673	0.404	0.135
0.540	0.534	0.535	0517	0.591	0.720	0.790	0.815	0.850	0.530	0.550	0.563	0.680	0.805	0.742	0.495	0.148
0.55	0.545	5.54	0.525	0.608	0.757	0.795	0.822	0.859	0.540	0.561	0.575	0.75	0.820	0.794	0.558	0.161
0.595	0.558	0.857	0.537	0.622	0.785	0.796	0.824	0.863	0.545	0.572	0.588	0.791	0.833	0.832	0.592	0.180
0.578	0.569	0.568	0.549	0.639	0.809	0.796	0.825	0.969	0.548	0.582	0.599	0.820	0.846	0.865	0.616	0.200
0.593	0.580	0.580	0.560	0.651	0.830	0.800	0.830	0.876	0.550	0.591	0.611	0.842	0.000	0.889	0.635	0.220
0.608	0.596	0.59	0.5	0.	0.847	0.811	839	0.883	0.553	0.603	0.623	0.868	0.000	0.910	0.651	0.238

is implied in the following property of $C(z)$: it is steep for the small values of r and rapidly reaches high values. Its steepness is approximately proportional to $\tau \cdot \frac{d r}{d i}$

The limiting conditions used to obtain the above results actually do not greatly restrict the problem because there are data indicating that conditions I and II really exist in the case of natural formations [2, 3]. Conditions IV and V show certain advantages of the module-structure characteristics in the identification of objects that are similar. This is actually the basic problent unclerlying each similar algorithm.

The algotithm described in iten A and the nodule-structure characteristics are applied in the following example: the set M consists of 34 reflective
characteristics of deciduous and coniferous vegetation as well as grass areas (Table 1). Each reflective characteristics is formed by 40 values of r at each 10 nm in the range of $400-800 \mathrm{~nm}$. These data were taken from paper [4]. The coeificient from condition Il is assumed to be 0.02 . The application of the algorithm from item A for M shows that the thirty-four classes of M are not identiffed by means of two-element combinations for λ_{i}, but that this is possible in 2212 three-element combinations. The same algorithm applied for $C(\tau)$ shows that there exist 29 two-element combinations for the ₹ values, by means of which the total set M is recognized. As the possible three-element combinations in this case are 9880 and the two-element ones for τ are $190\left[C(x)\right.$ is symmetric], the ratios $\frac{2212}{9880}$ and $\frac{29}{190}$ are similat in value Therefore, it can be stated that in this case $C(t)$ gives results which are by one order better than $r_{j}\left(\lambda_{i}\right)$.

It remains to prove the possibilities of the transforming functions C, C_{R} and K for a set consisting of a considerably larger number of classes.

References

1. Yanev, T., G. Astardgian, Ch. Nachev. A set of signs and taking a decision in structural analysis of one-dimensional objects. - In: IV International Symposium of Complex Systems, Information and Control. Varna, 1973.
2. Fu, K. S., D. A. Langrebe, T. L. Phillips. Informational processing of agricultural data obtained through distance measurements. - TIEP, 1968, N X.
3. Kondratiev J., A. A. Grigoriev, O. M. Pokrovsky. The informational contents of data from space distance indication parametres of environment and natural resources. Ed, Lenin University, Leningrad, 1975.
4. Krinov, E. L. The spectral reflective capacity of the natural formations. Acad. Sci., USSR, Moscow, 1947.

Дискриминантный анализ отражательных характеристик естественных природных образованнй, используюций минимальное число длин волн

Т. К. Янея, Д. Н. Мииев

(Pesюme)
Рассматривается вопрос о выборе и минимизации необходимого числа длин волн при измерении коэффициента отражения природных образований. Решение этого вопроса позволяет осуществить идентификацию спектральных отражательных характеристик $r_{j}\left(\lambda_{i}\right)$ данного множества M, состоящего из j классов объектов $O_{/ q} j=1, \ldots, N$.

