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It has been established that the different natural formations reflect the
energy of the visible and infrared ranges in differen! ways, As the range
is comparatively broad the speciral reflective characteristics are measured
in a considerable number of wavelengths. That makes the measuring pro-
cess and the subsequent analysis difficult, and the information obtained
contains a big amount of redundancy,

The problem to be solved here is the following: what is the minimum
number of wavelengths 2; and exactly in which wavelengths the reflection
index must be measured s¢ that the identification of the reflective charac-
teristics ry(4;) of a set M, given in advance, from J classes of objects O,
J=1,..., J,can be ensured. We assume that the functions »; (1), i--1,...,n
are given with their confidence intervals +4r, (%) in the visible range
of electromagnetlic waves 42,=2,—2). It is assumed that r/(3,) are statio-
nary random functions. The problem is solved in two ways: {1) the reflec-
tive spectral characleristics are used directly for the purposes of identifica-
tion; and (2) a transformation of r; (4} is carried out in advance by means
of suitable transforming functions, after which the identification of the trans-
formed functions is performed.

1. Identification by Means of (4}

The dividing surface for the identification of r;(4,} is chosen in accordance
with the Bayes criterion for a minimum average risk (one-dimensional case):

(1 _ wlhyag) _ TP ,

¢ w(ﬁ-:fﬂ;) Fih Pl
where r;, and r,; are weighting coetficients of the j and % classes of objects,
play and p{a,) are a priori probabilities of appearance in these classes. In
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out case all objects will be considered as equally likely and of equal weight
and then A,=1,1 e, the dividing surface of the criterion is reduced to the
intersection peint of the w{i:/a,) and w(}//a;) distributions of j and % class-
es. If this point is out of the confidence limits +.4r;(2;) and 4 dr, (1) of
the classes compared, these classes are identified in {he wavelength 2, The
algorithm is easily realized in the following way:

The matrix A of the relations “the {th and the &th classes are recog-
nizable in the »y+Ar; and r,+Ar, intervals” (these relations are dencted
here with 1j. The opposite ratios of nonrecognizability (when r;:Ar; and
ty-t-/r, bave a non-emply cross section) are designated by 0. The mairix
A is formed for all two-element combinations C% of the O, classes and for

all waveilengths ;.
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A subset of M is identified in a given combination of wavelengths 1, if in
each column of A containing the wavelengths there is at leasi one number 1.
In this way the rule for the addition of 0 and 1 is determined: 040=0;
O+1--1+0:==1-11-=1. The identification of r;(1,) by means of the combina-
tion O of the wavelengths is possible only if all columns of the submatrix
formed by C* have a sum equal o 1.

The complete sclution of the problem is obtained by studying succes-
sively the combinations C%, m- I,..., n uutil the first solutions belonging

to a given class of wavelength combinations (' are obtained.

2. Identification by Means of Transformation in Advance

The transformation of the original funclion #;(4;} is reasonable if the new
function offers better possibilities of identifying r;{i;) by means cf a smaller
number of wavelengths. That is why it is necessary for the transformed
function 2=f{r;) to check whether the Bayes criterion shows better results
{reducing Type I and Type II errors). For this purpose the law of the dis-
tribution of z must be determined:

. - dw
() P2)=-pI¥2)]. ¥'(2), 1= ¥2); Wi(2)- 5
Atfter that for the 2; and 2, distributions of the two classes compared the
smnmary error of Type I and Type 1l is to be found:

3) p- Jz'“pk (zydz-t fpf (2)de,

or

where 2, — internal intersection point of p(2)) and p(z,).
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In general, the integral in {3} is not solvable. When the set is given it
can be soclved by numerical methods. In order to obtain some analytical
results we examined the particular case determined by the following limiting
conditions : -

I. The distribution p(ry} is normal;

II. The conditions op<y; and, in particular, o;=gu; g<1, are satisfied.

[IIl. The functions z are integral transformations which, according to r;
and r, sampling, are replaced by their sums.

In this study the following transforming functions are examined:

a) Module-structure function:

T
4) Cy= [ | f)—7 (a4 ) | dx
a

used in paper {1} There i is proved that the funclion is symmetric with a
symmefry axis at xXx=-1It is shown also that C(z) and f{x) are in a ho-

momorphous relationship, i. e different functions determined in the following

way: f{x), if (jx+C)+D,i==+1, j=+1, C=const., D=const. may corres-

pond to the same function C(x). This homomorphism is not a strong limi-

tation, because in practice it can be easily transformed into an isomorphism
*of

by means of control characteristics of the type: Cenlr) = f|f(x) —f{x-Fo)ldx

0
and by the f(x) value for x=x, For the example examined in this work
it Is not necessary to use such control characteristics.
b} Kolmogorov’s structural function:

!

(5) Celr)= [ AR —Flx+ )P
c) Autocorrelation function;

(6) K ()= [ 1fx) = m] [ fiet-v)—mld.

In our case f(x)=r{4) and the integrals are substituted by the follow-
ing sums:

(48) C; (r)=%'[rf ()1 (4],
(53) c,,,(r1=%‘[r; )= ry(+ )
(6a) K}(I)Z%IIO @)= 1) [ry 3+ 2) 1)
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It follows from the limiting conditions I, 1, IIl that the sum C;(z)} has aiso
a normal distribution with an arithmetic mean C; and dispersion o2 respec-
tively equal to:
@) G@=~ 2T~ o~ XM GP -+ G+

{£)
For the sums C,; and K, according to equations {5a).and (6a) and condi-
tions T and I, after neglecting the small terms of higher order, we obtain:

ik | Gt St - o

o S =GN+ 11 Ui
. ¥ .
and

“ K 2 r By —=rl lry Gt 0)—17)
9) k.
0} e 2 —ry Py e+l e+ ) =1 By (g
)
. .‘Thus the distribution of C, C,, K from equations (4a), (5a) and (ba)
proves to be normai, provided the limitations I.and I are given, Then their
intersection point for the f and & classes {s found by means of the equation:

(r—us¥* (r—pp¥
T 2 i S
_ -— 2o, oo — - Zu ’
JZ;:: a; 5 o ay #
After calculating its logarithm the equation {takes the following form:
B el NS/ B U
; L %% 2
thus
(10) _ —bxJP—4ac
N e Ty g v
where am%—-%.
Uk Uf
FH
b=2 (”_; - _.g),
6;- l:!k
2 2 y
I i o
C- —--;—-—%--_-— 2In .
Ok . O %k

: The efficiency of each-of the transformations C, C,, K is measured by
the value of the integral in (3). In this case it may.take the following form:
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wjL2 o ,}3 o _:;i_
(34) p=[ e rang [,
— 21,2
F—aur. ® [
where ’?;.kz'o_ﬁﬁ {s the coordinate of the normalized normal distribution,
The value of p will be smaller when the {imit
—~ rm—,uﬂ
(11) I W

is greater in absolute value. In spite of the limiting conditions I, II and III,
the analytical examination of the criterion (11) is still difticult, as the expres-
sions for u;, and o, from (7}, (8) and (8} take part in (10} in a relatively
complicated manner, That is why two particelar problems are treated in our
further work.

IV, The functions r;{4;} and 7.(i;) are connected by the determinated
functional relation:

(12) PGy = {1 +0)r ),
where fi=const, 9|,

V. The functions r,(1,) and 7;(4;) are of such a {ype that their differ-
ences are of a randomn character.

{(13) 1)y =ri () + Arja (4),

where 4r;z{4;) —random function;
Ar A =0.

We shall first examine case IV,

It follows from equations (7), {8) and (9) that for u, o defined by (12}
and for the ihree transforming functions C, Cy, and K the following expres-
sions are valid:

up=(1+8) gy, of=(14-8)202.
Then the equation (10} takes the form

assuming Ine,/oy~0, and (11}, respectively:
f

Hy [ # 1. g
(11a) Vi

T e " 2¥e 2487V

Therefore in this case the efficiency of the criterion » is inversely pro-
portional to the coefticient of variance V' and the comparative analysis is
to be carried out by means of Vi, Vi, Vi For ihis purpose the following

ratios should be formed:
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With a view to equations (7), (8), (9) for weqy:

( Z,)a—?;')% AR Y AR

(f} 4y

(14 Sl [ s }?f)H %"()5— Y;—)ﬂ]a

0]

is obtained where, for the sake of simplicity, the substitutions X, =r,; (1),
Y,- r;{%;L7) are used. The sum 2 X,—VY;| can also be presented as
foilows :

2 Xi—Yii= V(XK= V) + (X=X,

{f) (M) (M)

where M, is the set of i values for which X;>Y;, and M, is the sei of {
values for which X,<Y,. This way of presenting allows 2'|X,—VY;| to be
differentiated with respect to X, and ¥; respectively.

In such a case the exiremums of wg .  are determined by the condition:

dw Jw
(15) K0, (188) —p e, i1, m

The system (15) is equivalent to the following system:
23| X,— V| 4. Z (X, = VR{X+ YO | o=V, PI2XG —- YY(XG + 1)
(X — VPR IXH X+ V) [2(X, = VPP~ (21X, — i 174

(16) XZUX— YR X+ VD] - 12X X~ V)PP
+[2(X3 + YD (23 (X, VP12 (Xi— V)l =0.

In (16) all sums are identical for the equation system where i=1,..., n.
Therefore {16) is a system of equations of the third power with respect to
X:. This system is to be satisfied, i. e. the n equations of the third power
must be cancelled out by their roots. As in this case all X;>0, the equa-
tions of the third power have only one real positive root, i. e. X;=const=X.

Similarly, the condition Y,--const=Y can be obtained which satisfies

the system (1ba).
Therefore wg o, has an exiremum at X;=X, Y,—-Y.

The valne of the extremum is
{17} (GJC-CK) ext=2.
By way of example a check with the following values of X; and V;:

X, =@, X,=2a, X3-=3a, y,—2a, y,--3a, y,- @ shows that the extremum Is
a maximumm.
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The following expression is obtained for the coefficient w¢ i

('Z’ X7, |)22[Xf(};§55ﬁ(_ s
_ M) Sy SRS
(18) D¢ = A ‘i

DX+ DX (Vi — 1y ]_“_ _

{) (#}
In & way analogous to the one used for De,ch it is shown that w . has an

minimum at X;=-X, ¥, =Y. As 2’){; :Z}ﬁ-, it follows that ai the extre-
{£) {4

mum X=Y, but then lim ;___x_—gi and, consequently \x—r|- y—r= I—_‘;ﬁl .
X,

The value of the minimum in this case is

(19) (wC,R’) ext= 2.

Finally, let us determine the ratio we ,, Mmeasuring the efficiency of C
with respect o 7. According to I and I this ratio is

(20) W =R e
i \; PACHRE)
()

The magnitude of wc, depends on the concrete structure of ry(%;). For

Instance, for the straight line y=x the module-structure characteristic is
given by the expression C(r)=2¢(T—1), while for the sine-shaped curve

y=sinx this expression is C(z)-—-.Ssin%- It is clear that for the straight line
the value of the function €(x) becomes greater than half the area between

the straight line and the abscissa when z>’r L) and, for the stne-shap-

2 e

2 ( 2
ed curve, when sin {,—> -;-—‘ QOur experience shows that for curves of the
spectral reflective characteristic type a considerable range of ¢ exists where

the condition 2‘!rf(.’.f)——r;(1{-+r)|>n%‘i is fulfilled. In this case, as

ZX?-—ZY?<):X§M and 5>f¥i;‘-‘i for w, , there exists a range for which
) I ’

(21) fﬂc,r>1/§ -

So far we have examined the case defined by condition IV. Let us
now assess the case defined by condition V. For this purpose it is sufficient
to examine the difference -C(K)_C(I)r-cf\’{k)“c!{(;)l and Ky —K;. As the

reflective characteristics r, and r; differ only in the random function which
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has arithmetic mean equal to zero for a sufficiently large set of values of
i, the following is obtained for the above ditferences:

(22) Ci—Cr= 2 Xi—Yu,— 2|1 X,
{#) {7}

= 214X;, @—AY), @1+ AT, ()~ 4X;, ()]0

(My) (Mg

in accordance with condition II
Similarly we obtain:

(23) |Cogy—Cngpyi= (g'm;.k (h—A4Y;, ()P L0
(24) K=K = 214, (D14Y;, ()]0

0]

Equations (22), {23) and (24) show that for functions defined by condition
V the module-structure characteristics have 0 efficiency, as opposed to C;
and K. This result can be considered as a weighting property of € which C,
and K do not possess to the same degree,

Discussion

1. When the reflective characieristics are used for their identification direct-
ly the algorithm exposed in item A furnishes the answer as fo what the
minimum number is of wavelengths 2Z; (miny by means of which the appurien-
ance of new objects to a given set M of reference classes can be recog-
nized. If the number of these classes is not too large, the necessary number
of wavelengths Z; mny In which r is to be measured is comparatively small.
This simplities the measuring process and the analysis of reflective charac-
teristics.

2. In the case where M contains many reference classes (for instatice,
several hundred) it is probable that the number of A;(n shall be commen-
surable with the total number n of the sampled valnes of r. Here it is
advisable to use some of the transforming funclions C, Ci, K examined above:

The equations (17), {19} and (21} contain the basic results of the three
transforming functions obtaiued so far. They show that there is a possibi~
lity for the modute-siructure characteristics, defined by equation (4), to have
a better efficiency than the original functions and the transformations defin-
ed by equations (5) and (6). This efficiency results in a decrease of pro-
bability for type [ and type II errors usmg the Bayes criferion for a mini-
mum risk when the identification of r; is carried out. This reduction of
errors leads to possibilities for the decrease also of the minimum number
of € (r) values, by means of which the identification of {he set M of refe-
rence classes with given reflective characteristics is realized. A betier effi
clency of ¢ is therefore to be looked for in the range of the greater vilues
of ¢ where the coefficient of variance V, decreases considerably.
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11 14 21 26 53 687 68 69 U]

Tabiel
74 } 75 ‘ 85 94

i
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w N || | L

400 |0.059/0.072/0.08410.02010,202(0.050/0.023|0.105[0.018/0,152/0.249/0.054|0.04410.030]v.030l0.617/0.015
410 10.080(0.0730.08610.020(6.203(0,050]0.0.24/0.10010,019/0.153/0.149(0.050/0.04610.033]0.038(0.018/0.015
420 10.061(0.074/0.691/0.020/0.204/0.050/0.025/0.090|0.020|0.  5410.149(0.049}0.049(0.039(0.042/6.019(0.018
430 |0.062(0.074|0.057(0.0210.205(0,05010.027|0.096|0.024/0.259[0. 150(0.05610.051 |0.040]0.048|0.020(0.020
440 10.061/0.073/0.101 |0.022|6.200(0,05010.028/0.094|0.0260.16210,1570.060/0.055/0.04 1 0.050(6.021[0.022
450 |0.065/0,072/0.10910.024/0.210(0.050(0.026[0.092|0.024 €.17 110.163]0.061|0.059/0.042(0.051(0.095|0.025
460 (0.073/0,071(0.115/0,025[0.211(0.050(0.027[0.090(0.027|6.182[0.176(0.060!0.063[0.043(0.052|8.030(0.027
470 10,076/0,070|0.125/0.026/0.211]0,050/0.026|0.090(0.029[0.200(0.190/0.059/0.068|0.044/0.05310.036/0.029
480 0.075/0,070(0.13110.027|0.212(0,050(0.026/0.090(0.028|0.215/0.200(0.06 1 |0.071/0.045/0.052/0.039/0.027
490 ;0 087(0,071|0.144/0.027|0,214/0.050(0.026(0.0910.027|0.222.0.209(0.066(0.07510.045(0.05210.040(0.026
500 10.095/0,073(0.16110.029(0.215(0,050(0.022|0.095|0:027|8,27716.218(0.070/0.081]0.049|0.055/0.041|0.029
510 10.106/0,077/0.185/0.034(0.215(0,051(0.031{0.100/0.027|0.230!0.222(0.070/0.089/0.059/0.062(0.044]0.035
520 8.120(0,080(0.213]0.040/0.215|0,053/0.036|0.105(0.025]0.231|0.232{0.096/0.096(0,075(0.075/0.050/0.050
530 |0.149(0.082)0.233/0.053(0,214/0,056/0.041(0.1110.083|0.232/0.22610.110[0.103(0.087(0.09310.060!0.072
540 |0.169|0.087(0.2450.066/0.213|0,059/0.051|0.114]0.041]0.23410.227(0.119]0.109(0.00410.10710.071 |0.093
550 [0.176/0.090(0.249]0.070/0.213{0.060]0.049/0.114{0.045)0.235/0.228[0.120/0.112|0.098[0.1 12/0.0950.104
560 [0.178)0.0910.247(0.067|0,213)0.061(0.048|0.112[0.044(0.239/0.230/0.112(0.116(0.096(0.113(0.129/0.097
570 (0,1730.095(0.241(0.053(0,216/0.063]0.050|0.108[0.042(0.243/0.232(0.1 1 1/0.11810.088(0.11110.154/0.084
580 |0.168]0.098/0.231(0.048(0.220/0.064/0.044|0.103{0,040(0,246/0.23510.112(0.117/0.081]0.110(0.151/0.073
590 |0.168)0.100/0.228/0.050(0.224/0.065/0.043]0.100/0.039|0,2480.238|0.105/0.115(0.081{0.100]0.143(0.067
600 [0.160(0,1010,22410.050/0,231(0.066]0.044/0.097|0,040|0,248/0.239/0.088|0.113{0.085(0.1050.182|0.061
610 |0.152(0.101(0.22010.049/0.239(0.067(0.042(0.094/0.05010.246/0.239/0.078|0.118[0.085(0.101[0.1280.060
630 [0,153)0.102/0.21 1{0.053|0.247(0.068/0.0400.090/0.05410.243(0.237/0.078/0.125(0.079|0.096(0. 130(0.059
630 10.151(0.102)0.205(0.05110,25+/0.067|0.0430.087|0.052/0.239(0.2310.078|0.132/0.073{0.091{0.131|0.052
640 [0.143(0.101]0.202(0.042(0.261(0.071/0.043]0.083|0.050/0.233(0.228|0.074|0.140/0.069/0.087(0.120(0.047
650 0.14110.100(0.208]0.036/:269|0.080|0.035(0.080(0.048]0,229|0.222|0.082|0.142|0.075(0.085/0.1 21 |0.040
660 |0.150[0.100]0.211(0.040|.274/0,089|0.025(0.075/0.050(0,22410.218(0.095/0.148(0.08210.08710.123/0.045
670 |0.151/0.100/0.218/0,055(0,280/0.097|0.022|0.072/0,053|0.228/0.22410.101(0.151|0.105/0.08610.13810.045
630 |0.178|0.100{0.225/0.0680.284]0.102]0.028|0.085(0.060]0.242(0.230[0.112/0.157|0.145[0.095/0.161/0.045
850 [0.210(0,100/0.241/0.088|0.28810,106(0.030|0.122/0,070(0.251(0.245(0.132/0,165(0.182(0.1050.20 1 0.042
700 |0.238(0,100(0.252(0.120/0,295(0,1070.042|0.180(0.11010.268|0.252{0.1510.172|0.212/0.122/0.248/0.061
710 [0.264/0.100]0.271/0.141]0,298/0,106/0.050/0.2450,122{0.298(0.261 |0.180/0.185/0.148(0.141|0.308|0.072
720 (0.281{0.100/0.301/0.164|0,299/0.106/0.062]0.27810.150/0,329/0.272(0.259/0.210/0.291 0.1 58/0.342(0.100
730 (0.332(0.100/0.310(0.187]0.301/0.111(0.070/0.328/0.161|0,343|0.508[0.342(0,232(0.301|0.184/0.395/0.125
740 [0.374/0.100/0.321|0.218|0.301(0.122/0,075|0,369|0.180[0.350/0.308|0.467|0.250(0.30610.218(0.405(0.172
750 (0.418(0.100|0.351|0.270/0.300(0.145/0.079/0.397(0,200/0.350,0.306(0.542]0.252(0.305(0.269|0.470(0,205
760 [0.458)0.101/0.360(0.320(0.300{0.190]0.081]0.418|0.202(0,348/0.303/0.571]0,272|0.30310.290(0,481[0,249
770 [0.512(0.102/0.370(0.3420.299(0.2200.082/0.437|0.201|0.339/0.300(0.591 |0.281(0.309(0.322(0.491|0.292
780 |0.517/0.103/0.398]0.360)0.296(0.240|0.08310.452{0.193|0.327(0.293/0.605/0.289/0.311{0.342|0.501|0.322
790 10.526/0.104/0.405/0.375/0.29310.255/0.084/0.470{0.189]0.3110.283}0.6 150,293|0.313|0.358/0.5200.342

Here it is appropriate to deal with the following cases:

a) When 7 is small, a correlation between the neighbouring values of
r is possible to exist, i. e. the difference r;(1;)—r;(4+1) will not be a com-
position of independent random quantities. Then the equations (7), (8) and
(9) will not be valid. However, a similar correlation could hardly be expect-
ed for +>(5+8)41=50-80nm because such a v corresponds to a transi-
tion into a zone of a new hue. Because of that most values of C, C,, K
and their dispersions remain as defined in (7), (8) and (9).

b) As the efficiency of C(r) is expected to be considerable when the z
values are higher, the following question is to be answered: When the set
M'is large, will there be a sufficient number of high values of C for the
identification of the classes of M? The affirmative answer to this question
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105 10§ ‘ 107 | 108 108 | 111 112 113 143
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0.022
0.022
0.023
0.024
0,026
0,027
0,029

- 10,028

0,032
0.035
0.040
0.049
0.068
0.086
0.102
0.115
0.110
0.096
0.087
0.078
0.070
0.065
0.061
0.056
(0.054
0.057
0.062
0.08%
0.078
(.128
0.202
0,402
0.482
0.530
0.540
0.551
0.595
0.578
0.583
0.60G8

|
0.020(0.022}0.022| 0.022| 0.022 0.020| 0.023] 0.0230| 0.021 0.028] 0.037| 0.040] 0.059 0.050] 0.027 0.019
0.020(0.622/0.022| 0.022 0.022 0.020| 0.023! 0.031] 0.021| 0.028/ 0.037| 0.042| 0.061| 0.050| 0.032| 0.024
0.020(0.023,0,023 0.023] 0.023| 0,021/ 0.026' 0.037| 0.022| 0.029] 0.037| 0.045] 0.069| 0.050| 0.035| 0.097
0.020(0.024|0,024| 0.024| 0.028| 0.023| .028, 0.045/ 0-023| 0.030| 0.038) 0.049] 0,077 0,051| 0.035| 0.029
$.022(0.026)0,028| 0.028| 0.032| 0.026 0.0311 0.043| 0.024] 0,031 0.039( 0.050| 0.100| 0,053 0.035| 0,029
(.023(0.027(0.030! 0,030| 0.035| 0.029] 0.633 0,047/ 0.025| 0.032| 0.040} 0.053 0.150| 0,057| 0.037| 0,030
0.025(0.02910.032! 0,032| 0.039] 0.030| 0.035] 0.053| 0.026( 0.034| 0.041| 0.056] (,180( 0.060| 0.038| 0.028
0.026(0.028/0,034] 0.034 0.040 0.030| 0.035| 0,068| 0.029| 0.036] 0.042| 0.058| 0,192| 0.061 0.041| 0,033
0.028(0.032(6.038! 0.038] 0.039 0 031] 0.035 0.056| 0.030| 0.038 0.043| 0.060| 0.181] 0.062( 0.040! .02
0,030(11.035(0.040| 0.040{ 0.040| 0.033| 0.038| 0.058| 0.031| 0.032| 0.047| 0.063] 0.163| 0.068| 0.039! 0,030
0.041(ix041(0,045| 0.045| 0,049 0.038| 0,042( 0.068] 0.035| 0.045| 0.052{ 0,070] 0,149| 0.072| 0.041| 0.035
0.059(0.052|0.060| 0.062| 0,070 0.050| 0.056/ 0.086 0.041| 0.053| 0.064| 0,088| 0,127/ 0,074 0.084| 0.044
0.079(0.074/|0,082| 0.092| 0,105| 0 078! 0.090{ 0.124 0.055| 0.070| 0,080| 0.120| 0.125| 0.115( 0.089/ 0.050
0.008(:1.10110,115[ 0.123| 0.149] 0,112[ 0.119] 0.172( 0.076[ 0.089[ 0.101| 0.159] 0.116| 0.167| 0.116| 0.055
0.111]0.119(0,128] 0.143| 0.182( 0.129] 0.134/ 0.202] 0.090( 0.108| 0.121] 0.180| 0.104| 0.192] 0.126| 0.058
0.102|0.121(0.129] 0.151| 0.198| 0.133] 0.145] 0.225| 0.095| 0,118| 0.134} 0.184| 0.096/ 0.210| 0.131| 0,061
0.092|0.117(0.123] 0.147| 0.182] 0.131{ 0.142( 0.224| 0.090| 0.112{ 0.131| 0.173| 0.087| 0.199| 0.121| 0.062
0.080/0.105(6.111| 0,127/ 0.161/ 0.120] 0.131| 0.221| 0.081| 0.103| 0.122] 0.159| 0.072| 0.173{ 0.114| 0.061
0.072/0.092(0.100( 0.110] 0.141{ 0.107| 0.114/| 0.204| 0.073| 0.096/ 0.111| 0.147| 0,076/ 0.155| 0.093| 0.059
0.065/0.083(0.090( 0.095| 0.134| 0,098} 0.103| 0.185] 0.069| 0.090| 8.163| 0.134| 0.085| 0.152| 0.084| 0.057
0,061/0.077(0.082( 0.088| 0.133] 0.094] 0.100] 0.186| 0.063| 0.082| 0.087| 0,126 0.145| 8.161| 0.073| £.055
0.057(0.671|0.077| 0.081] 0.110] 0.091] 0.097| 0.176) 0.060| 0.679| 0.090| 0.118] 0.238| 0.146| 0.079] 5.053
0-050(0.069(0.073| 0,079( 0.095| 0.084] 0.094| 0.161| 0.059] 0.073| 0.087| 0.112| 0.318| 0.131| 0.077| 0.051
0.045(0.065/0.070| 0.057| 0.100{ 0.079] 0.089! 0.157| 0.057| 0.070| 0 682| ©.107] (.383| 0.117| 0.088| 0.032
0.042(0.064(0.070| 0,077 0.092| 0.073| 0.082| 0.152| 0.055| ¢.068| 0.080| C.101| 0.510| 0.105( 0.070| 0.053
(.045(0.065(0.070) 0.078] 0.096] 0.071/ 0.077] 0.150| 0.054| 0.066| 0.079| €.100] 0.570] 0.084| 0.067| 0.054
0.0:48(0.073(0.080 0,081[ 0,102 0.075] 0,081{ 0,155 0.058| 0.072| 0.085| ¢.105( 0.620| 0.088| 0.069] 0.057
0.055(0.082(0.111| 0.118( €.11810.095( 0.108| 0.181| 0.075| 0.698| 0.125| {1.182| 0.660| 0.125| 0.081/ 0.062
0.073(0.095/0,151| 0.145( 0.158, 0.118| 0.141] 0.253| 0.161| 0.238| ¢.295| 0.381 0.690| 0.200| 0.1 12| 8.066
0.138(1,142|0.242| 0.238| 0.250( 0.208| 0.225| 0,325 0.355| 0,395| 0.450| 0.452| 0.715| 0.278| 0.141| 0.071
0.381[0.225(0.371| 0.368| 0.380| 0.310| 0,375 0.458| 0.442| 0.471| ©.485| 0.525| 0.755| 0.361| 0.181| 0.081
0.465\0.420(0.391| 0.491| 0.508 0.550 0.550] 0,606/ 0.481| 0.500| 0.321| 0.565| 5,752| 0.435| 5.268( 0.112
0.511[0.495(0.471| 0.542| 0.608{ 0.728] 0,740 0.754| 0.501| 0.519| 0.532| (.580| 0.771| 0.589| 0.350/ 6.128
(1.524(0.522(0.307| 0.575| 0.618| 0.763| 0.780| 0.797| 0.520| 0 535| 0.550| 0.620| 0.789| 0.673| 0.404| 0.135
(,534(0.535(0 517| 0.591| 0.728 0.790| 0.815( 0.850| 0.530| 0.550] 0.563| 0.680| 0.805| 0.742| 0.485 0.148
0.545(0.946(0.525( 0.608| 0,757 0.795] 0.822| 0.859) 0.540| 0.561| 0.575 0.750( 0.820| 0.794 0.558 11161
(0.558|0.757(0.537 0.622| 0.785( 0.796/ 0.824| 0,863 0.545| 0.572| 0.588| 0.791| 0.833| 0.832| 0.582| (.180
0.568(0.568(0.549/ 0.639| 0.868| 0.796{ 0.825| 0.969| 0.548| ©.582| 0,584 0.820| 0.8346| 0.865| 0.616| 0.200
0.580/0.580(0,560( 0.651| 0.830( 0.800 0.830| 0.876| 0.550| 0.59%| 0.611| 0.842] 0.000| 0.889| 6.635| 0.220
0.596,[].593 0.570( 0.669| 0.847| 0.811| 0.838| 0.883| 0.553| 0.603| 0.625| 0.868| 0.600] £.910| 9.651| 0.233

is implied in the lollowing property of C{z): it is steep for the small vatues
of v and rapidly reaches high values, Its steepness is approximately propor-

. dr
tional to . 2

The limiting conditions used to obtain the above results actually do
not greally restrict the problem because there are data indicating that con-
ditions | and Il really exist in the case of natural formations [2, 3]. Condi-
tions 1V and V show certain advantages of the module-structure characteri-
stics in the identification of objects that are similar. This is actually the
basic problem underlying each similar algerithm.

The algorithm described in item A and the module-structure characteristics
are applied in the following example: the set M consists of 34 reflective
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characteristics of deciduous and coniferous vegetation as well as grass areas
(Table 1). Each reflective characteristics is formed by 40 values of  at each
10 nm in the range of 400-800 nm. These data were taken from paper [4]
The coefficient from condition Il is assumed to be 0.02, The application of
the aigorithm from item A for M shows that the thirty-four classes of M
are not identified by means of iwo-element combinations for As; but that
this is possible in 2212 three-element combinations. The same algorithm
applied for C(z) shows that there exist 29 two-element combinations for the
t values, by means of which the total set M is fecognized. As the possible

three-element combinations in ihis case are 9880 and the two-element ones
for v are 190 [C(z) Is symmetric], the ratios ggé—g and 129% are similar in valie
Therefore, it can be stated that in this case Clv) gives results which are by
one order better than r,(4,).

It remains fo prove the possibilities of the transforming functions C, C,
and K for a set consisting of a considerably larger number of classes.
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JVCKDAMUHAHTHLIN AHAANS OTPAXKATENBHBIX XapaKTePHCTHE
€CTECTBEHHBIX NDUDOXHLIX OOPA30BAHUE, UCNOAL3YIOMIMEL
MHHMMA/IbHOE HMCAO AJAUH BOJAH

. K. Snes, /. H Muiues
(Peatwue)

Paccmarpusaercs sonpoc o BEIGODE B MHEMMH3AUUH HEeOBXOXMMOTO 9MCIa NN
BOMH npit’ usMepenud koS(phHUHEHTA OTPAMEHHR NDPUPOAHHIX 0oGpasoBaknil.
Pewiense sTore Bonpoca nospoaseT OCYHIECTEHTE HAEHTHOHKALMIO CeKTpah-
HRIX OTpaMaTeJbHBIX XADaKTEPUCTHK #;{A,) AaHHOFO MHOMNcecTBa M, cocros-
ero u3 j xaaccop o6bexros Oy j:=1,... N
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